Integrating Virtual and Physical Interactions through higher-order networks to control epidemics
Santiago Lamata-Otín,
Adriana Reyna-Lara and
Jesús Gómez-Gardeñes
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
In the context of our increasingly digitalized society, virtual interactions have become integral to daily communication, complementing traditional face-to-face interactions. These digital pathways, however, are often overlooked in the context of epidemic control, particularly in Digital Contact Tracing, where adoption rates of tailored wearable applications for this purpose remain suboptimal. This study elucidates the key role of the virtual environment in managing infectious disease outbreaks. We develop an integrated framework that combines various detection strategies to assess the efficacy of virtual tools in bending epidemic waves, analogous to conventional Contact Tracing approaches. Our analysis extends to the dynamics of higher-order interactions — characteristic of virtual platforms — and their contribution to epidemic control. Furthermore, we investigate the interplay between physical and virtual interactions, that aligned interactions optimize epidemic control in daily routine scenarios. Our findings underscore the critical role of virtual interactions in epidemic management, suggesting that current societal structures inherently support innovative detection and control strategies.
Keywords: Complex networks; Contagion processes; Higher-order interactions (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924011445
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011445
DOI: 10.1016/j.chaos.2024.115592
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().