EconPapers    
Economics at your fingertips  
 

Spatiotemporal patterns in a 2D lattice of Hindmarsh–Rose neurons induced by high-amplitude pulses

J.S. Ram, S.S. Muni and I.A. Shepelev

Chaos, Solitons & Fractals, 2024, vol. 189, issue P1

Abstract: We present numerical results for the effects of influence by high-amplitude periodic pulse series on a network of nonlocally coupled Hindmarsh–Rose neurons with 2D geometry of the topology. We consider the case when the pulse amplitude is larger than the amplitude of oscillations in the autonomous network for a wide range of pulse frequencies. An initial regime in the network is a spiral wave chimera. We show that the effects of external influence strongly depend on a balance between the pulse frequency and frequencies of the spectral peaks of the autonomous network. Except for the destructive role of the pulses, when they lead to loss of stability of the initial regime, we have also revealed a constructive role. We have found for the first time the emergence of a new type of multi-front spiral waves, when the wavefront represents a set of several close fronts, and the wave dynamics are significantly different from common spiral waves: neurons oscillate independently to the wave rotation, the rotation velocity is in many times less than for the common spiral wave, etc. We have also discovered several types of cluster spatiotemporal structures induced by the pulses.

Keywords: Spiral wave; Hindmarsh–Rose neuron; Lattice network; Gaussian impulse (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924011652
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011652

DOI: 10.1016/j.chaos.2024.115613

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011652