EconPapers    
Economics at your fingertips  
 

Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves

Bhaskar Chakraborty, Sounov Marick and Nandadulal Bairagi

Chaos, Solitons & Fractals, 2024, vol. 189, issue P1

Abstract: This work uses a reaction–diffusion system to explore self-organized pattern-forming phenomena through species distribution in a tri-trophic food web system. The interacting non-diffusive system involves a bottom prey, one specialist intermediate predator dependent on the bottom prey, and a generalist top predator, having its food preference regulation on both the bottom prey and intermediate predator. The system encounters temporal instability through Hopf-bifurcation and chaotic oscillations about the coexistence equilibrium with over-dependency on a particular food source. We provide analytical conditions for diffusion-driven Turing and wave instabilities. A weakly nonlinear analysis (WNA) is performed to examine the patterns of Turing instability close to the critical threshold. Numerical simulations show spatiotemporal patterns like spots, stripes, a mixture of spots & stripes and spatiotemporal chaos. The numerical investigations highlight the non-Turing instabilities consisting of Hopf, wave, Hopf-Turing, Hopf-wave. The diffusion of species suppresses regular and irregular spatiotemporal oscillations, giving stability to the system. Using a heat map of the Lyapunov exponents of the time series for different pairs of parameter values in a bi-parametric plane, it is demonstrated that the Turing pattern dominates the oscillatory Hopf pattern if the critical parameter value is from the Hopf-Turing region and is close to the Hopf bifurcation threshold, but the Hopf pattern dominates if the parameter pair is significantly away from it. The qualitative comparison of the non-Turing instabilities is provided with the corresponding spatiotemporal distribution of the species. It is observed that the high-amplitude oscillations of Hopf and Hopf-dominated non-Turing oscillations are vicious for the spatially distributed population.

Keywords: Reaction–diffusion model; Hopf-bifurcation; Turing instability; Wave instability; Weakly nonlinear analysis; Spatiotemporal chaos (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792401186X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401186x

DOI: 10.1016/j.chaos.2024.115634

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401186x