EconPapers    
Economics at your fingertips  
 

Self-triggered consensus resilient control for multi-agent systems against sensor deception attacks based on a single parameter learning method

Junwen Xiao and Yongchao Liu

Chaos, Solitons & Fractals, 2024, vol. 189, issue P1

Abstract: This paper presents a self-triggered consensus resilient control method for nonlinear multi-agent systems (MASs) under sensor deception attacks. A single parameter learning method is integrated into backstepping technique to simplify design procedure. The neural networks are utilized to compensate for unknown dynamics of the MASs. Moreover, a self-triggered mechanism is presented for MASs to refrain from continuously monitoring triggering conditions and conserve communication resources. The designed controller can resist sensor deception attacks and guarantee that all signals of the MASs are uniformly bounded. An expository simulation example reveals the virtue of the presented method.

Keywords: Self-triggered; Sensor deception attacks; Multi-agent systems; Backstepping; Single parameter learning (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012013
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012013

DOI: 10.1016/j.chaos.2024.115649

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012013