New aspects of black box conditional gradient: Variance reduction and one point feedback
Andrey Veprikov,
Alexander Bogdanov,
Vladislav Minashkin and
Aleksandr Beznosikov
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
This paper deals with the black-box optimization problem. In this setup, we do not have access to the gradient of the objective function, therefore, we need to estimate it somehow. We propose a new type of approximation JAGUAR, that memorizes information from previous iterations and requires O(1) oracle calls. We implement this approximation in the Frank–Wolfe and Gradient Descent algorithms and prove the convergence of these methods with different types of zero-order oracle. Our theoretical analysis covers scenarios of non-convex, convex and PL-condition cases. Also in this paper, we consider the stochastic minimization problem on the set Q with noise in the zero-order oracle; this setup is quite unpopular in the literature, but we prove that the JAGUAR approximation is robust not only in deterministic minimization problems, but also in the stochastic case. We perform experiments to compare our gradient estimator with those already known in the literature and confirm the dominance of our methods.
Keywords: Optimization; Zero-order optimization; Frank–Wolfe methods (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012062
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012062
DOI: 10.1016/j.chaos.2024.115654
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().