A network method to analyze compound extreme events: Risk enhancement relationship and trigger causal relationship in high voice traffic and high data throughput events
Li-Na Wang,
Hao-Ran Liu,
Yu-Wen Huang,
Chen-Rui Zang and
Jun Wang
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
Based on ideas from event coincidence analysis (ECA), we propose a network analysis method to study compound extreme events at different geographical locations. Integrating network modeling into statistical correlation research allows us to analyze potential risk enhancement relationship and trigger causal relationship between these events. In this approach, we consider different geographical locations as nodes and construct a directed edge from node i to node j when event A at location i occurs synchronously before event B at location j. Precursor coincidence analysis quantifies the risk enhancement relationship between two types of extreme events, while trigger coincidence analysis quantifies the trigger causal relationship between two types of extreme events. A directed weighted network can be constructed based on statistical correlations between these events at different geographical locations. Further analysis of network topology characteristics extends traditional ECA in method and application. Herein, we construct the precursor functional network and the trigger functional network of high voice traffic and high data throughput to analyze potential risk enhancement and trigger causal relationships between these events at different base stations within a communication system.
Keywords: Complex networks; Extreme events; Communication systems; Event coincidence analysis (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792401213X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401213x
DOI: 10.1016/j.chaos.2024.115661
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().