Impulsive quasi-containment control in stochastic heterogeneous multiplex networks
Xin Jin,
Zhengxin Wang and
Xiaojie Chen
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
In this work, we propose a model for heterogeneous multiplex networks with stochastic perturbations. We consider multiple leaders in the networks and design an impulsive controller for cost saving to investigate the containment control problem in the stochastic heterogeneous multiplex networks. By means of the Lyapunov function method and stochastic impulsive differential equations theory, we obtain sufficient conditions in which the states of all followers converge to the bounded convex hull spanned by the states of multiple leaders. We also obtain the upper bound of the convergence region of the synchronization error system. Furthermore, we study the case with time delay and derive the sufficient conditions for the states of synchronization error to converge to the bounded region. Finally, we give two numerical examples to verify the theoretical results.
Keywords: Heterogeneous multiplex networks; Quasi-containment control; Stochastic perturbations; Impulsive control; Time delay (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012189
DOI: 10.1016/j.chaos.2024.115666
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().