Complex dynamics in tick-borne disease transmission: A Filippov-type control strategy model with multiple time delays
Ning Yu and
Xue Zhang
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
This paper presents a tick-borne disease transmission model with a Filippov-type control strategy that involves spraying insecticides to kill ticks once the number of infected hosts exceeds a certain threshold. The model also incorporates two delays in disease transmission: an internal delay τ1, representing the maturation period of pathogens inside ticks, and an external delay τ2, accounting for the time from a host being bitten by an infected tick to becoming infectious. Theoretical analysis deduces that the endemic equilibrium of the delayed Filippov system may undergo a Hopf bifurcation as the delays exceed critical levels. Furthermore, based on Filippov’s convex analysis, the sliding mode dynamics of the system are explored. The results indicate that depending on the threshold levels, the system’s solutions eventually converge to either the regular equilibrium of the two subsystems, a pseudo-equilibrium on the sliding mode, or a stable periodic solution. From a numerical perspective, the system undergoes different boundary focus bifurcation under different time delays and thresholds. Moreover, variations in the delay can lead to the emergence of a global sliding bifurcation on the sliding mode. Therefore, a Filippov system with multiple delays provides new insights and directions for controlling the spread of tick-borne diseases.
Keywords: Transmission dynamics; Tick-borne disease; Filippov system; Multiple time delays; Sliding bifurcation (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012256
DOI: 10.1016/j.chaos.2024.115673
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().