Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
Mengwei Sun,
Lu Ren,
Jian Liu and
Changyin Sun
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
This article investigates the event-triggered prescribed-time Nash equilibrium seeking problem among multiple coalitions of agents in noncooperative games. Each coalition acts as a virtual player in the noncooperative game, with decisions made by its member agents. Agents lack complete information about others’ decisions and instead estimate them through a communication graph. An event-triggered prescribed-time multi-coalition Nash equilibrium seeking method is developed based on the leader-following consensus protocol, dynamic average consensus protocol, and gradient play. This method ensures the Nash equilibrium of the multi-coalition game is reached within a prescribed time, even when communication between agents only occurs under specific triggering conditions—effectively conserving communication resources. Unlike existing approaches, the proposed algorithm allows precise settling time assignment without prior knowledge of system parameters. This algorithm also prevents Zeno behavior. Lastly, the efficiency of the designed algorithm is demonstrated through simulation experiments.
Keywords: Multi-coalition noncooperative game; Nash equilibrium seeking; Prescribed-time convergence; Event-triggered scheme (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012311
DOI: 10.1016/j.chaos.2024.115679
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().