Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation
Majdi Gzal,
Victor Kislovsky and
Yuli Starosvetsky
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
This paper provides analytical investigation of nonstationary regimes in a strongly anharmonic Klein-Gordon chain subjected to the two-component parametric excitation. We explore the mechanisms of formation and provide a comprehensive analytical characterization of the dynamics of two distinct highly nonstationary beat-wave regimes, namely the weakly- and strongly- modulated beat-waves. To this end, we derive the double parametrically driven discrete p-Schrodinger model in the neighborhood of 2:2:1 parametric resonance. The obtained non-autonomous slow-flow model depicts the low-energy complex amplitude modulations of coupled oscillators in the vicinity of 2:2:1 resonance. Through a special coordinate transformation, we exactly reduce the slow-flow system dynamics to a beat-wave slow invariant manifold governed by three collective coordinates. To study the complex nonstationary dynamics of beat-waves, we further reduce the overall system dynamics onto the super-slow invariant manifold (SSIM) by applying an additional multi-scale procedure to the system of collective coordinates. Analysis of the system dynamics on the SSIM reveals the two types of non-stationary beat-wave regimes. The first type is a weakly modulated beat-wave response, exhibiting super-slow amplitude modulation without amplitude relaxation. The second, more intriguing type is a strongly modulated beat-wave response, which exhibits rapid amplitude relaxations characterized by two distinct behaviors: one involving rapid amplitude decay to the trivial state, and the other manifested by the recurrent relaxation oscillations. We derive analytical approximations that describe the mechanisms of formation and the entire dynamics of these highly nonstationary beat-wave states. Remarkably, the analytical model aligns satisfactorily with numerical simulations for both weakly and strongly modulated beat-wave states.
Keywords: Strongly anharmonic Klein-Gordon chain; Bi-harmonic parametric excitation; Strongly modulated response; Beat-waves; Relaxation; Multi-scale analysis; Discrete p-Schrodinger equation; Slow invariant manifold; Super slow invariant manifold; Nonautonomous slow modulation (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792401244X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401244x
DOI: 10.1016/j.chaos.2024.115692
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().