A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents
Xianwei Rong,
Jean Chamberlain Chedjou,
Xiaoyan Yu,
Makhkamov Bakhtiyor Shukhratovich,
Donghua Jiang and
Jacques Kengne
Chaos, Solitons & Fractals, 2024, vol. 189, issue P1
Abstract:
This work presents an autonomous hyperjerk type circuit where a generalized memristor consisting of a diode-bridge and an RC filter acts as nonlinear component. The dynamics equations of the proposed circuit are presented in the form of an infinitely differentiable (i.e. smooth) system of order six. A detailed analysis of the model, carried out using classic techniques for studying nonlinear systems, reveals surprising behaviors such as the coexistence of bifurcation modes, non-trivial transient behaviors, offset boosting, torus, chaos, as well as hyperchaos with three positive Lyapunov exponents. These results are obtained by varying both the initial states and the model parameters. This multitude of dynamic properties is verified in the laboratory by carrying out series of measurements on the prototype of the memristive circuit. To the best of our knowledge, the circuit proposed in this article represents the simplest memristor-based circuit known to date in the relevant literature which can generate hyperchaotic signals with three positive Lyapunov exponents.
Keywords: 6D memristive hyperjerk circuit; Hyperchaos with three positive exponents; Multiple coexisting dynamics, non-trivial transient; Experimental verification (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012566
DOI: 10.1016/j.chaos.2024.115704
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().