Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction
Yansu Ji and
Xiaochen Mao
Chaos, Solitons & Fractals, 2024, vol. 189, issue P2
Abstract:
This paper studies the dynamics of a thermosensitive neuronal network with delayed chemical synapses under electromagnetic induction. The stability and different bifurcations of the network are analyzed. Abundant and interesting bursting oscillations are explored, such as point–point bursting, cycle–cycle bursting, point-cycle bursting and cycle-point bursting oscillations. Time delay plays important roles in the system dynamics, including the amplitude of the spiking state and the delay interval of the subcritical Hopf bifurcation. The average Hamiltonian energy is considered to estimate the synchronized behaviors between neurons, such as intermittent synchronization. As the strength of the chemical synapses varies, asynchronous behaviors, intermittently synchronized and fully synchronized states are observed. The influences of the feedback strength gain of external stimuli induced by electromagnetic induction and temperature coefficient on the synchronized dynamics are discussed. Based on the exponential function circuit, time delay circuit and transfer function circuit, the circuit platform of the network is constructed. The responses of the circuit reach an agreement with the obtained results.
Keywords: Thermosensitive neuronal network; Time delay; Chemical synapse; Memristor; Bursting oscillation; Hamilton energy (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012736
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012736
DOI: 10.1016/j.chaos.2024.115721
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().