EconPapers    
Economics at your fingertips  
 

Stability analysis of an axially moving viscoelastic beam under transverse magnetic fields and thermal loads

Sihan Wu, Xudong Gu, Bingxin Zhao and Zichen Deng

Chaos, Solitons & Fractals, 2024, vol. 189, issue P2

Abstract: Slender flexible structures in electronic devices and spacecraft usually operate in complex thermal and magnetic environments, in which the stability is greatly affected by the complex environments. In this paper, an analytical method is proposed to study the stability of an axially moving viscoelastic beam under transverse magnetic fields and thermal loads. Firstly, the nonlinear control equation of the axially moving viscoelastic beam is derived by using Hamilton principle, in which the effects of the thermal loads, magnetic field variations and nonlinear deformation of the beam are considered based on the principle of magnetoelasticity. Secondly, Galerkin's method was applied to the derived continuous model to obtain the discrete differential equations of each vibrating mode. Finally, the incremental harmonic balance (IHB) method was employed to determine the unstable regions in the parameter space. The influences of the thermal load, axially moving velocity of the beam, viscosity coefficient, and magnetic field intensity on the regions of stability are investigated. It is found that the thermal loads, axially moving velocity and magnetic field intensity exert a significant influence on the unstable region. The derived results take into account of the combined effects of magnetic field and thermal variation, which is beneficial in understanding the stability of axially moving beams under complex magnetic and thermal environment.

Keywords: Axially moving beam; Viscoelasticity; Transverse magnetic field; Thermal load; IHB method (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012785
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012785

DOI: 10.1016/j.chaos.2024.115726

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012785