EconPapers    
Economics at your fingertips  
 

Propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam in the fractional nonlinear Schrödinger equation

Shangling He, Xi Peng, Yingji He, Chun Shan and Dongmei Deng

Chaos, Solitons & Fractals, 2024, vol. 189, issue P2

Abstract: We present the propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam (CCPGVB) in the Fractional nonlinear Schrödinger equation (FNSE) numerically and find some interesting behaviors. The CCPGVB can propagate like quasi solitons along the propagation direction. The autofocusing effect of the CCPGVB gets stronger while the autofocusing length monotonously decreases and the number of focus become lessen as the Lévy index approaches 2. By adjusting the Lévy index, the chirp factor β, the input power Pin, as well as the order of the off-axis vortex pair (m,l), the results show that these factors can effectively control the propagation dynamics of the CCPGVB, including intensity distribution, focal length, focal intensity, the light spot and the number of focus. Finally, the Poynting vector and the angular momentum of the CCPGVB prove the autofocusing and diffraction behaviors.

Keywords: Nonlinear optics; Chirped Pearcey Gaussian vortex beam; Poynting vector; Fourier optics (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012864
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012864

DOI: 10.1016/j.chaos.2024.115734

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012864