Propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam in the fractional nonlinear Schrödinger equation
Shangling He,
Xi Peng,
Yingji He,
Chun Shan and
Dongmei Deng
Chaos, Solitons & Fractals, 2024, vol. 189, issue P2
Abstract:
We present the propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam (CCPGVB) in the Fractional nonlinear Schrödinger equation (FNSE) numerically and find some interesting behaviors. The CCPGVB can propagate like quasi solitons along the propagation direction. The autofocusing effect of the CCPGVB gets stronger while the autofocusing length monotonously decreases and the number of focus become lessen as the Lévy index approaches 2. By adjusting the Lévy index, the chirp factor β, the input power Pin, as well as the order of the off-axis vortex pair (m,l), the results show that these factors can effectively control the propagation dynamics of the CCPGVB, including intensity distribution, focal length, focal intensity, the light spot and the number of focus. Finally, the Poynting vector and the angular momentum of the CCPGVB prove the autofocusing and diffraction behaviors.
Keywords: Nonlinear optics; Chirped Pearcey Gaussian vortex beam; Poynting vector; Fourier optics (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012864
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012864
DOI: 10.1016/j.chaos.2024.115734
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().