PINN-wf: A PINN-based algorithm for data-driven solution and parameter discovery of the Hirota equation appearing in communications and finance
Yu Chen and
Xing Lü
Chaos, Solitons & Fractals, 2025, vol. 190, issue C
Abstract:
In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solutions are derived and the parameters are calibrated through physics-informed neural networks (PINNs), where various complex initial conditions on a continuous wave background are considered and compared. PINNs define the loss function based on the strong form via partial differential equations (PDEs), while it is subject to the diminished accuracy when the PDEs enjoy high-order derivatives or the solutions contain complex functions. We hereby propose a PINN with weak form (PINN-wf), where the weak form residual of PDEs is embedded into the loss function accounting for data errors effectively. The proposed algorithm involves domain decomposition to derive the weak form function, assigning distinct test functions to each sub-domain based on the selected sample points. Two schemes of computational experiments are carried out to provide valuable insights into the dynamic characteristics of solutions to the Hirota equation. These experiments serve as a robust reference for understanding and analyzing the behavior of solutions in practical scenarios.
Keywords: Physics-informed neural network; Weak form; Hirota equation; Domain decomposition (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924012219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012219
DOI: 10.1016/j.chaos.2024.115669
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().