Vortex light bullets in rotating Quasi-Phase-Matched photonic crystals with quadratic and cubic nonlinearity
Shunfang Chen,
Linjia Wang,
Zhuo Fan,
Wei Peng,
Di Wu,
Yuan Zhao and
Siliu Xu
Chaos, Solitons & Fractals, 2025, vol. 190, issue C
Abstract:
We design a setup for generating stable vortex light bullets (LBs) in a rotating Quasi-Phase-Matched (QPM) photonic crystal, exhibiting competing quadratic and cubic nonlinearity. The photonic crystal is designed with a rotational checkerboard structure. Within this framework, three types of vortex LBs (square-, rhombus- and necklace-shaped) are observed, which are constructed as four-peak and eight-peak vortex modes, respectively. The dynamics of vortex LBs are controlled by system parameters, including the power, rotating frequency, size of checkerboard cells, and azimuthal indices of the incident light. In contrast to the stable two-dimensional vortex solitons observed in pure quadratic systems, the vortex LBs investigated in the competing quadratic and cubic nonlinear system can support vortex LBs with higher topological charges. Especially, the rotating frequency results in a transition of vortex LBs from a quadrupole to the traditional vortex modes.
Keywords: Vortex light bullets; Rotating Quasi-Phase-Matched photonic crystal; Competing quadratic and cubic nonlinearity (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924013298
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013298
DOI: 10.1016/j.chaos.2024.115777
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().