EconPapers    
Economics at your fingertips  
 

Exact solutions of the harmonically confined Vicsek model

L.L. Bonilla and R. González-Albaladejo

Chaos, Solitons & Fractals, 2025, vol. 191, issue C

Abstract: The discrete time Vicsek model confined by a harmonic potential explains many aspects of swarm formation in insects. We have found exact solutions of this model without alignment noise in two or three dimensions. They are periodic or quasiperiodic (invariant circle) solutions with positions on a circular orbit or on several concentric orbits and exist for quantized values of the confinement. There are period 2 and period 4 solutions on a line for a range of confinement strengths and period 4 solutions on a rhombus. These solutions may have polarization one, although there are partially ordered period 4 solutions and totally disordered (zero polarization) period 2 solutions. We have explored the linear stability of the exact solutions in two dimensions using the Floquet theorem and verified the stability assignments by direct numerical simulations.

Keywords: Vicsek model; Flocking; Exact periodic orbits; Invariant circles; Floquet theorem; Harmonic confinement; Orbit quantization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792401378X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401378x

DOI: 10.1016/j.chaos.2024.115826

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401378x