EconPapers    
Economics at your fingertips  
 

Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera

Luis M. Abia, Óscar Angulo and Juan Carlos López-Marcos

Chaos, Solitons & Fractals, 2025, vol. 191, issue C

Abstract: We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental population model for the dynamics of the sexual phase of Monogonont rotifera. To cope with the difficulties of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical discretization of a reformulation of the model problem in terms of a new computational size variable that evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions of the discrete equations to the theoretical steady states of the continuous age-structured population model. Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics. Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time integration of age-structured population models with infinite lifespan.

Keywords: Age–structured population model; Unbounded age; Continuous–discrete dynamics; Asymptotic behavior; Monogonont rotifera; Numerical methods (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924013961
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013961

DOI: 10.1016/j.chaos.2024.115844

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013961