EconPapers    
Economics at your fingertips  
 

Estimation and improvement of the performance of a bistable vibration energy harvester with geometric nonlinearities

Weiting Miao and Huilin Shang

Chaos, Solitons & Fractals, 2025, vol. 191, issue C

Abstract: This study aims to investigate and improve the performance of a vibration energy harvester (VEH) with geometric nonlinearities from a global-dynamics point of view. According to static bifurcation analysis of the VEH dynamic system, the initial assembly angle between each rod and the midline is selected as a key structural parameter to be adjusted for configuring bistable wells and lowering the potential barrier. On this basis, inter-well and intra-well resonant responses are studied via the extended averaging method. Based upon the construction of homoclinic orbits via the perturbation-incremental method, the Melnikov method is applied to analyze the critical conditions for the inter-well chaotic response. Moreover, numerical results validate the accuracy of the analysis and further investigate rich dynamic behaviors such as higher-order periodic responses, chaos, hidden and rare attractors, and fractal basins of attraction. It follows that the largest value of the initial assembly angle for configuring bistable wells is optimal for efficiently energy harvesting under the low-frequency or low-intensity base oscillation. And the increase in the level of the base oscillation can induce the global attraction of an inter-well resonant response, implying reliable and high output of the VEH. The results may provide some reference in the optimal design and operations of geometrically nonlinear vibration energy harvesters.

Keywords: Vibration energy harvester; Geometric nonlinearity; Multistability; Fractal; Chaos; Hidden attractor (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924014498
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014498

DOI: 10.1016/j.chaos.2024.115897

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014498