EconPapers    
Economics at your fingertips  
 

Regression analysis for thermal transport of fractional-order magnetohydrodynamic Maxwell fluid flow under the influence of chemical reaction using integrated machine learning approach

Waqar Ul Hassan, Khurram Shabbir, Ahmed Zeeshan and Rahmat Ellahi

Chaos, Solitons & Fractals, 2025, vol. 191, issue C

Abstract: An innovative idea of regression analysis based on machine learning technique for magnetohydrodynamic flow of Maxwell fluid within a cylinder is proposed. Mean Squared Error is used for the simulation of heat transfer and fluid flow. The governing flow equations involving a system of coupled, nonlinear fractional partial differential equations are solved by homotopic approach called HPM. The predicted solution is obtained with Python built-in code on Google-Colab. The effects of Atangana-Baleanu fractional time order derivative on the momentum, thermal, and concentration boundary layer are analyzed. It is observed that the momentum boundary layer gets higher and higher by increasing the values of Atangana-Baleanu fractional time order derivative. The thermal boundary layer shows improvement with the increasing value of the Peclet number. The concentration boundary layer thickness declines with the growing values of chemical reactions. The validation of results is examined by MSE, function fit, and correlation index.

Keywords: Regression analysis; Mean Squared Error; Machine learning; Atangana-Baleanu fractional time order derivatives; MHD; Maxwell fluid; Chemical reaction; Heat and mass transfer (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924014796
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014796

DOI: 10.1016/j.chaos.2024.115927

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014796