EconPapers    
Economics at your fingertips  
 

Complexity analysis of challenges and speckle patterns in an Optical Physical Unclonable Function

Christos N. Veinidis, Marialena Akriotou, Alex Kondi, Efi-Maria Papia, Vassilios Constantoudis and Dimitris Syvridis

Chaos, Solitons & Fractals, 2025, vol. 191, issue C

Abstract: Speckle patterns, arising from the interference of coherent wave fronts scattered by disordered materials, serve as the basis for Optical Physical Unclonable Functions (Optical PUF), offering inherent randomness crucial for generating secure cryptographic keys. This paper investigates the universal properties of speckle images through an analysis of their complexity using a multiscale entropy-based methodology. Utilizing an experimental setup simulating Optical PUFs, eight sets of uncorrelated challenges produce speckle patterns meeting contemporary literature specifications. The Pearson’s Cross-Correlation Coefficient and the cross-correlation function are used to assess the similarity between the speckle patterns within each individual set, by calculating these measures for all possible pairs of corresponding patterns. The entropy-based complexity analysis of these patterns is found to be sensitive to their grain size while elucidating in a multiscale fashion the entropy footprint of their short and long-range correlations. Finally, it is shown that the presence of grains in the speckle patterns determines their complexity, while a kind of duality between the challenges and the produced speckle patterns is highlighted.

Keywords: Complexity; Shannon entropy; Physical unclonable function (PUF); Speckle patterns; Grain size (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924014905
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014905

DOI: 10.1016/j.chaos.2024.115938

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014905