Superposition of interacting stochastic processes with memory and its application to migrating fish counts
Hidekazu Yoshioka
Chaos, Solitons & Fractals, 2025, vol. 192, issue C
Abstract:
Stochastic processes with long memories, known as long memory processes, are ubiquitous in various science and engineering problems. Superposing Markovian stochastic processes generates a non-Markovian long memory process serving as powerful tools in several research fields, including physics, mathematical economics, and environmental engineering. We formulate two novel mathematical models of long memory process based on a superposition of interacting processes driven by jumps. The mutual excitation among the processes to be superposed is assumed to be of the mean field or aggregation form, where the former yields a more analytically tractable model. The statistics of the proposed long memory processes are investigated using their moment-generating function, autocorrelation, and associated generalized Riccati equations. Finally, the proposed models are applied to time series data of migrating fish counts at river observation points. The results of this study suggest that an exponential memory or a long memory model is insufficient; however, a unified method that can cover both is necessary to analyze fish migration, and our model is exactly the case.
Keywords: Self-exciting jump; Affine process superposition; Mutual excitation; Mean field; Aggregation; Fish count (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924014632
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014632
DOI: 10.1016/j.chaos.2024.115911
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().