Fractional-order clique functions to solve left-sided Bessel fractional integro-differential equations
P. Rahimkhani,
Y. Ordokhani and
M. Razzaghi
Chaos, Solitons & Fractals, 2025, vol. 192, issue C
Abstract:
In this study, we consider a new class of nonlinear integro-differential equations with the Bessel fractional integral-derivative. For solving the considered equations, fractional-order clique functions (FCFs), and some of their properties are introduced. First, we approximate the unknown function and its derivatives/integrals in terms of the FCFs. Then, we substitute these approximations and their derivatives/integrals into the considered equation. The left-sided Bessel fractional derivative/integral (LSBFD/I) of the unknown function is approximated using the properties of the FCFs and LSBFD/I. By collocating the resulting residual function at the well-known shifted Legendre points, we derive a system of nonlinear algebraic equations. In addition, convergence analysis of the proposed approach is discussed. Finally, the presented strategy is applied to some numerical experiments to verify its applicability and accuracy.
Keywords: Fractional-order clique functions; Bessel fractional derivative; Legendre collocation points; Numerical method; Convergence analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925000384
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000384
DOI: 10.1016/j.chaos.2025.116025
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().