Thermal non-equilibrium process for nonreciprocity with dual-TE/single-TM peaks
Yuqing Xu,
Bo Wang,
Jing Ye and
Jinyun Zhou
Chaos, Solitons & Fractals, 2025, vol. 192, issue C
Abstract:
In this study, we present a nonreciprocal thermal emitter with dual-polarization capabilities, utilizing a monolayer silicon ring array featuring circular voids. The device demonstrates nonreciprocal behavior under both transverse electric (TE) and transverse magnetic (TM) polarizations, displaying two distinct nonreciprocal peaks in TE polarization and a single peak in TM polarization. Rigorous coupled-wave analysis (RCWA) and validation through coupled-mode theory (CMT) confirm high nonreciprocal efficiency in the mid-infrared region. Specifically, under TE polarization, the two nonreciprocal peaks are observed at wavelengths of 15.074 μm and 15.228 μm, yielding nonreciprocal efficiencies of 94.48 % and 95.65 %, respectively. Under TM polarization, the nonreciprocal peak is positioned at 15.127 μm, with an efficiency of 94.58 %. Allowing for functional differentiation based on the polarization of the incident light. This dual-polarization feature significantly broadens its application potential in thermal management, energy harvesting, and infrared camouflage, particularly enabling more efficient energy conversion and radiation control at small incident angles. Our work offers new insights for future multifunctional nonreciprocal thermal emitters.
Keywords: Dual-polarization nonreciprocity; Non-equilibrium process; Thermal radiation; Dual nonreciprocal peaks (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925000414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000414
DOI: 10.1016/j.chaos.2025.116028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().