EconPapers    
Economics at your fingertips  
 

Prescribed-time stability of stochastic nonlinear delay systems

Liheng Xie, Shutang Liu and Xingao Zhu

Chaos, Solitons & Fractals, 2025, vol. 193, issue C

Abstract: This paper investigates the prescribed-time stability and stabilization problem for stochastic nonlinear delay systems. We introduce a new definition of prescribed-time mean-square stability which includes stability in probability and prescribed-time convergence to zero. Utilizing the prescribed-time adjustment function and some stochastic analysis techniques, we establish Lyapunov theorems of prescribed-time mean-square stability for stochastic nonlinear delay systems. An appealing feature of the new theorems is that the solution of prescribed-time stable stochastic nonlinear delay systems can converge to zero at any preset time irrespective of initial data and design parameters. Moreover, under the local Lipschitz condition and the Khasminskii-type condition, we prove that the controlled stochastic nonlinear delay system has a unique solution and achieves prescribed-time mean-square stability. Two simulation examples demonstrate the effectiveness of the theoretical analysis.

Keywords: Prescribed-time mean-square stability; Stochastic nonlinear delay systems; Prescribed-time adjustment function; Khasminskii-type condition (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925001298
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001298

DOI: 10.1016/j.chaos.2025.116116

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-24
Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001298