EconPapers    
Economics at your fingertips  
 

Bimodal distribution of path multiplicity in random networks

Yu Dong, Ye Deng and Jun Wu

Chaos, Solitons & Fractals, 2025, vol. 193, issue C

Abstract: Erdös–Rényi (ER) random networks have long been central to the study of complex networks, providing foundational insights into network structure and behavior. Despite extensive research on their structural properties, the exploration of path multiplicity in ER random networks — quantifying the number of shortest paths between a random node pair — remains limited. In this paper, we systematically investigate the path multiplicity in ER random networks, including exploring its distribution, average, variance and coefficient of variation through both simulation and analytical approaches. We first observe a bimodal distribution of shortest path amounts between node pairs in ER random networks. As the connection probability p increases, the left part steepens and the right part forms a bell-shaped distribution, gradually separating from the left. The mean and variance of path multiplicity reach their maximum values at approximately p=2/3 and p=5/6, respectively, while the coefficient of variation peaks at low p values and then increases monotonically before p=1. These statistical properties highlight significant variations in path multiplicity under different connection probabilities. Furthermore, we examine the behavior of other network metrics in ER random networks, including resistance distance, efficiency, and natural connectivity, and identify distinct differences compared to path multiplicity. These results shed new light on the intricate structural patterns that emerge in ER random networks and provide a deeper quantitative understanding of the factors that govern shortest path multiplicity, contributing to the broader study of random network theory.

Keywords: Random networks; Shortest path; Path multiplicity; Bimodal distribution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925001377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001377

DOI: 10.1016/j.chaos.2025.116124

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-24
Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001377