Stability, convergence, and energy preservation robust methods for fully implicit and fully explicit coupling schemes
Taj Munir,
Can Kang,
Hongchu Chen,
Hussan Zeb,
Muhammad Naveed Khan and
Muhammad Usman Farid
Chaos, Solitons & Fractals, 2025, vol. 194, issue C
Abstract:
This paper presents an analysis of the Godunov–Ryabenkii stability, Generalized Mini-mal Residual(GMRES) convergence, and energy-preserving properties of partitioned and monolithic approaches (fully implicit and fully explicit schemes) for solving coupled parabolic problems. Specifically, we consider a bi-domain parabolic diffusion problem with two types of coupling conditions at the interface: Dirichlet–Neumann and heat-flux coupling. Our findings shows that the Dirichlet–Neumann coupling is unconditionally stable for both approaches. In contrast, the heat-flux coupling requires additional conditions to ensure the stability of the coupled problem. For numerical approximations, finite volume and finite difference schemes are used. The results show that energy preservation is achieved with one-sided differences in the finite volume method, while the finite difference method achieves conservation when central difference approximations are used for both the coupling and boundary conditions in the heat-flux coupling case. Additionally, Dirichlet–Neumann coupling maintains stability and energy preservation in both methods using the one-sided approach without requiring extra conditions. However, for heat-flux coupling, an additional restriction is necessary to ensure stability. The challenge for the convergence of coupled interface problems arise due to strong domain interactions and sensitive interface conditions, like Dirichlet–Neumann or heat-flux coupling. The poor system conditioning and discretization choices can slow the rate of convergence. For this purpose we used the GMRES method. This work provides a comprehensive framework for addressing coupled parabolic diffusion problems using robust, stable, and energy-preserving numerical methods.
Keywords: Dirichlet–Neumann algorithms; Heat flux coupling; Conjugate heat transfer; Stability analysis and discrete energy conservation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925001444
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001444
DOI: 10.1016/j.chaos.2025.116131
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().