EconPapers    
Economics at your fingertips  
 

Finding influential nodes via graph embedding and hybrid centrality in complex networks

Aman Ullah and Yahui Meng

Chaos, Solitons & Fractals, 2025, vol. 194, issue C

Abstract: Finding influential nodes is essential for understanding the structure of complex networks and optimizing the dissemination of critical information. The key challenge lies in determining which nodes hold the most significance and how to identify and select a group of disseminators to maximize their influence. Therefore, researchers have proposed various approaches and centrality measures, each offering unique perspectives based on the network’s topology. However, existing methods encounter inherent issues due to their sole consideration of node topology information. They also overlook the interconnectedness between nodes during the node filtering process, leading to imprecise evaluation results and limitations in terms of spread scale. In this paper, we introduce a novel scheme to tackle this problem in the context of social complex networks, termed graph embedding-based hybrid centrality (GEHC). Our proposed GEHC scheme starts by employing the DeepWalk graph embedding method to project the high-dimensional complex graph into a simpler, low-dimensional vector space. This mapping enables efficient calculation of the Euclidean distance between local pairs of nodes, allowing us to capture the proximity of nodes accurately. To further enhance the identification of influential nodes, we integrate network topology information and hybrid centrality indices. To evaluate the performance of our approach, we conduct extensive experiments on real-life networks using standard evaluation metrics. Experimental results on real-world networks demonstrate that our proposed scheme achieves a Kendall rank correlation coefficient close to 0.9, reflecting a strong correlation with the outcomes of the susceptible–infected–recovered model and validating its effectiveness in identifying influential nodes. The experimental results showcase the superiority of our approach in accurately identifying nodes with high influence, surpassing the performance of traditional and recent methods in complex networks.

Keywords: Influential nodes; Graph embedding; Centrality; Social complex networks (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792500164X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:194:y:2025:i:c:s096007792500164x

DOI: 10.1016/j.chaos.2025.116151

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-04-08
Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s096007792500164x