EconPapers    
Economics at your fingertips  
 

Directed transport of two-coupled Brownian particles in a rough potential

Peng-Juan Zhang, Guang-Kuo Zhao, Peng Wang, Jie Huo and Xu-Ming Wang

Chaos, Solitons & Fractals, 2025, vol. 194, issue C

Abstract: Revealing transport behaviors of Brownian particles in rough potential is of great significance for understanding some physical and biological phenomena. We study the effect of roughness in the potential landscape on the transport of two coupled inertial Brownian particles subjected to a time-periodic force in a Gaussian environment. The transport property is characterized by the current, the time-averaged asymptotic velocity. The interactions, between the roughness and the coupling strength, the driving strength, noise, as well as the coupling length, lead to the transport particularly complex, such as the current varies non-monotonically with the coupling and/or the coupling length, the moderate roughness can enhance the transport but the large roughness can hinder the transport in the case of weak driving, and so on. The mechanism governing these processes is revealed by the effective potential and the corresponding effective driving. The most important finding is that the wells formed by the roughness act as a ladder for the coupled particles to climb up and over the side of the ratchet in some situations, while they serve as the traps to imprison the particles in other situations. These results perhaps can provide guidance for enhancing transport performance of the coupled particles in a rough environment.

Keywords: Rough ratchet; Directed transport; Coupled Brownian particles; Current reversal; Noise (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925002176
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002176

DOI: 10.1016/j.chaos.2025.116204

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-04-08
Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002176