EconPapers    
Economics at your fingertips  
 

The impact of feedback mechanisms on Rayleigh–Bénard penetrative convection in micro-polar fluids

Reena Nandal, Vinit Vinod Revankar and Eliyash Ahmed

Chaos, Solitons & Fractals, 2025, vol. 194, issue C

Abstract: This study examines the effects of feedback control and internal heat sources on the onset criterion of Rayleigh–Bénard convection (RBC) in a horizontal Boussinesq micropolar fluid layer. A linear stability analysis, employing the Chebyshev pseudospectral method, is conducted to compute the eigenvalues and assess the stability of the system under varying conditions. The analysis considers several parameters, including heat conduction, coupling, couple stress, scalar controller gain, and internal heat sources. The findings reveal that the introduction of internal heat sources destabilizes the system, while the scalar controller gain significantly delays the onset of convection, thereby enhancing system stability. Additionally, it is demonstrated that an increase in both the coupling and heat conduction parameters contributes positively to system stabilization, whereas an increase in the couple stress parameter hastens the onset of convection. Notably, the investigation indicates that the system demonstrates greater stability when the boundary is heated from above as opposed to from below. These results provide crucial insights for the control of heat transfer in micropolar fluids and suggest that optimizing the scalar controller gain, along with careful tuning of other system parameters, can significantly enhance stability. The implications of this research are substantial for the design of efficient fluid dynamical systems, particularly in scenarios requiring precise control over temperature, pressure, and flow, such as those encountered in chemical processing, power generation, and manufacturing.

Keywords: Convection; Micro-polar fluid; Internal heat source/sink; Feedback control; Proportional–Integral–Derivative (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925002413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002413

DOI: 10.1016/j.chaos.2025.116228

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-04-08
Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002413