EconPapers    
Economics at your fingertips  
 

Heterogeneous Hopfield neural network with analog implementation

Bocheng Bao, Chunlong Zhou, Han Bao, Bei Chen and Mo Chen

Chaos, Solitons & Fractals, 2025, vol. 194, issue C

Abstract: The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.

Keywords: Activation function; Analog circuit; Hopfield neural network; Hardware experiment; Kinetics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925002474
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474

DOI: 10.1016/j.chaos.2025.116234

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-04-08
Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474