Jamming transition of connected vehicles platform integrating speed change memory information to counteract cyber-attacks on slope lane
Guanghan Peng,
Keke Wang,
Huili Tan and
Darong Huang
Chaos, Solitons & Fractals, 2025, vol. 196, issue C
Abstract:
Under the connected environment, connected vehicles need to resist cyber-attacks such as tampered information in an open network of the traffic system. Additionally, slope lane is frequently seen in real traffic, which means that the gravitational action of the vehicles themselves cannot be ignored. Accordingly, a novel car-following model is constructed by aggregating the tampered speed difference (a type of cyber-attacks) with compensation and gravitational action on slope lane under connected vehicles environment (called for TSDCG model for simply). Moreover, we obtain the conditions for the traffic system to remain stable and the range of compensation parameters through cybernetics. Furthermore, numerical simulation is implemented for various intensities of the tampered speed difference. The results show that the tampered speed difference deteriorates the traffic system on both uphill and downhill. And on the contrary, the compensation can alleviate traffic congestion and effectively improve the stability of the traffic system when the connected vehicles are attacked by the tampered speed difference whether uphill or downhill. Also, the simulation results show that the compensation for the tampered speed difference can effectively reduce fuel consumption and pollutants emissions including CO, HC and NOx.
Keywords: Connected vehicles; Cyber-attacks; Car-following model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925004266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004266
DOI: 10.1016/j.chaos.2025.116413
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().