The normalized time-fractional Cahn–Hilliard equation
Hyun Geun Lee,
Soobin Kwak,
Seokjun Ham,
Youngjin Hwang and
Junseok Kim
Chaos, Solitons & Fractals, 2025, vol. 198, issue C
Abstract:
We present a normalized time-fractional Cahn–Hilliard (TFCH) equation by incorporating time-fractional derivatives to model memory effects in phase separation processes. We use a normalized time-fractional derivative, which is a form of the Caputo fractional derivative, to improve the flexibility and physical interpretation of the model. This normalization allows for a more consistent interpretation of fractional orders, which enables fair comparisons across different orders of the derivative. To solve the normalized TFCH equation, we use an efficient computational scheme based on the Fourier spectral method, which ensures high accuracy and computational efficiency. Furthermore, we conduct a thorough investigation into the dynamic behavior of the normalized TFCH equation and focus on how varying the fractional-order time derivative influences the evolution and morphology of phase domains. Numerical simulations demonstrate the versatility and effectiveness of the proposed method in modeling complex phase separation dynamics.
Keywords: Phase-field equation; Fourier spectral method; Phase separation; Fractional partial differential equations (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925004631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925004631
DOI: 10.1016/j.chaos.2025.116450
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().