Predicting the critical behavior of complex dynamic systems via learning the governing mechanisms
Xiangrong Wang,
Dan Lu,
Zongze Wu,
Weina Xu,
Hongru Hou,
Yanqing Hu and
Yamir Moreno
Chaos, Solitons & Fractals, 2025, vol. 198, issue C
Abstract:
Critical points separate distinct dynamical regimes of complex systems, often delimiting functional or macroscopic phases in which the system operates. However, the long-term prediction of critical regimes and behaviors is challenging given the narrow set of parameters from which they emerge. Here, we propose a framework to learn the rules that govern the dynamic processes of a system. The learned governing rules further refine and guide the representative learning of neural networks from a series of dynamic graphs. This combination enables knowledge-based prediction for the critical behaviors of dynamical networked systems. We evaluate the performance of our framework in predicting two typical critical behaviors in spreading dynamics on various synthetic and real-world networks. Our results show that governing rules can be learned effectively and significantly improve prediction accuracy. Our framework demonstrates a scenario for facilitating the representability of deep neural networks through learning the underlying mechanism, which aims to steer applications for predicting complex behavior that learnable physical rules can drive.
Keywords: Critical behavior of complex dynamic systems; Spreading dynamics; Graph neural networks (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925005284
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005284
DOI: 10.1016/j.chaos.2025.116515
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().