EconPapers    
Economics at your fingertips  
 

Influence of next-nearest neighbor interactions on the dynamics of discrete energy transport within neuronal microtubules

R. Abouem A Ribama, M. Youssoufa, R.Y. Ondoua, Z.I. Djoufack and J.P. Nguenang

Chaos, Solitons & Fractals, 2025, vol. 198, issue C

Abstract: In this study, we investigate the influence of next-nearest neighbor interactions or homodimer coupling on the dynamics of quantum breathers in neuronal microtubules (nMTs) using both analytical and numerical methods. From the classical model describing the dynamics of the microtubule using a Hamiltonian, we formulated its quantum equivalent through Bose operators. By employing Ehrenfest’s theorem and Glauber’s method of coherent states, we showed that nMT dynamics can be described by the discrete nonlinear Schrödinger equation (DNLSE). The analysis of modulational instability (MI) allowed us to define localization zones for breathers, revealing the impact of the second coupling term and well width on system’s behavior. We conducted numerical simulations to examine three scenarios based on homodimer and heterodimer coupling values in relation to breather propagation. We found that homodimer coupling enhances the temporal distribution of energy and extends breather localization towards the central site. Additionally, we observed that energy within nMTs is quantized with a linear profile, influenced by homodimer coupling. The interaction between two breathers indicated that this coupling also affects energy exchanges, impacting the collective dynamics of microtubules and potentially stabilizing or destabilizing configurations, thereby influencing neuronal responses. These findings enhance the understanding of energy transfer in biological systems such as the nervous system, which is responsible for coordinating actions and rapid communication within the body. This system, also known as the neuronal system, utilizes synapses to transmit signals. In this process, neurons release chemical neurotransmitters that can influence the activity of receiving cells.

Keywords: Neuronal microtubules; Next-nearest neighbor interactions; Discrete nonlinear Schrödinger equation; Modulational instability; Quantum breathers (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792500551X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:198:y:2025:i:c:s096007792500551x

DOI: 10.1016/j.chaos.2025.116538

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-06-17
Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s096007792500551x