Efficient polynomial kernel-based method for multi-term time-fractional diffusion systems in regular and irregular domains
Babak Azarnavid,
Mojtaba Fardi and
Hojjat Emami
Chaos, Solitons & Fractals, 2025, vol. 199, issue P1
Abstract:
This paper presents an efficient polynomial kernel-based method for solving multi-term nonlinear time-fractional diffusion systems in high-dimensional regular and irregular domains. Time-fractional diffusion equations are increasingly recognized for their ability to model complex phenomena across various disciplines, including physics, engineering, and finance. By incorporating fractional-order temporal derivatives, these equations effectively capture nonlocal memory effects and intricate dynamics in the studied systems. We aim to provide an effective method for obtaining suitable approximate solutions to the time-fractional diffusion system of equations, which presents a significant challenge in numerical methods. We utilized the properties of Bernoulli polynomials to construct approximations in a finite-dimensional reproducing kernel space. The time-fractional system of equations is discretized using a polynomial kernel-based technique in the spatial direction. Then, an accurate high-order backward differentiation formula is utilized for time discretization. A thorough convergence analysis is conducted, establishing error bounds for the proposed method. To validate the versatility and effectiveness of the method, we conduct several numerical simulations demonstrating its performance across two and three dimensional domains.
Keywords: Multi-term time-fractional diffusion systems; Finite-dimensional kernel space; Bernoulli polynomials; Polynomial reproducing kernels; Backward differentiation formula; Error analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925006794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925006794
DOI: 10.1016/j.chaos.2025.116666
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().