EconPapers    
Economics at your fingertips  
 

Dynamic evolution of cooperation based on adaptive reputation threshold and game transition

Hongyu Yue, Xiaojin Xiong, Minyu Feng and Attila Szolnoki

Chaos, Solitons & Fractals, 2025, vol. 199, issue P1

Abstract: In real-world social systems, individual interactions are frequently shaped by reputation, which not only influences partner selection but also affects the nature and benefits of the interactions themselves. We propose a heterogeneous game transition model that incorporates a reputation-based dynamic threshold mechanism to investigate how reputation regulates game evolution. In our framework, individuals determine the type of game they engage in according to their own and their neighbors’ reputation levels. In turn, the outcomes of these interactions modify their reputations, thereby driving the adaptation and evolution of future strategies in a feedback-informed manner. Through simulations on two representative topological structures, square lattice and small-world networks, we find that network topology exerts a profound influence on the evolutionary dynamics. Due to its localized connection characteristics, the square lattice network fosters the long-term coexistence of competing strategies. In contrast, the small-world network is more susceptible to changes in system parameters due to the efficiency of information dissemination and the sensitivity of strategy evolution. Additionally, the reputation mechanism is significant in promoting the formation of a dominant state of cooperation, especially in contexts of high sensitivity to reputation. Although the initial distribution of reputation influences the early stage of the evolutionary path, it has little effect on the final steady state of the system. Hence, we can conclude that the ultimate steady state of evolution is primarily determined by the reputation mechanism and the network structure.

Keywords: Game transition; Reputation mechanism; Adaptive reputation threshold; Prisoner’s dilemma; Evolutionary games (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925007064
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007064

DOI: 10.1016/j.chaos.2025.116693

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-07-15
Handle: RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007064