Decoding driving states based on normalized mutual information features and hyperparameter self-optimized Gaussian kernel-based radial basis function extreme learning machine
Jichi Chen,
Fuchang Fan,
Chunfeng Wei,
Kemal Polat and
Fayadh Alenezi
Chaos, Solitons & Fractals, 2025, vol. 199, issue P1
Abstract:
This study presents an analysis of driver's unfavorable driving states (UDS) using normalized mutual information (NMI) features and a hyperparameter self-optimized radial basis function extreme learning machine (RBF-ELM). By computing the mutual information across different frequency bands (including delta, theta, alpha, beta, and gamma frequency bands) in EEG signals, brain functional connectivity matrices are constructed to reveal the nonlinear coupling relationships between brain regions. The introduction of NMI reduces the effects of signal dimensionality differences, which ensures the comparability of features across subjects. After preprocessing and band-pass filtering of EEG signals, NMI features from five frequency bands are extracted, and RBF-ELM is then employed for distinguishing UDS. In the RBF-ELM model, an automatic hyperparameter optimization approach is implemented, combining grid search and five-fold cross-validation to select the optimal number of hidden layer neurons and regularization parameters. The experimental results show that the NMI features from the beta band provide excellent classification performance, achieving an accuracy of 94.06 % in detecting UDS. Moreover, the hyperparameter self-optimized RBF-ELM model exhibits outstanding performance on the test set, with an area under the receiver operating characteristic (ROC) curve (AUC) value of 0.9915. Compared to classic machine learning algorithms, the proposed method outperforms support vector machine, ensemble learning, linear discriminant analysis, logistic regression, neural networks, and k-nearest neighbors in terms of accuracy, sensitivity, precision, and specificity. The method presented in this paper provides a promising solution for real-time monitoring of drivers' psychological states and fatigue warning.
Keywords: Electroencephalography; Normalized mutual information; Radial basis function extreme learning machine; Hyperparameter optimization; Frequency band analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925007647
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007647
DOI: 10.1016/j.chaos.2025.116751
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().