EconPapers    
Economics at your fingertips  
 

A class of high-order fractional parallel iterative methods for nonlinear engineering problems: Convergence, stability, and neural network-based acceleration

Mudassir Shams, Nasreen Kausar and Bruno Carpentieri

Chaos, Solitons & Fractals, 2025, vol. 199, issue P2

Abstract: Conventional analytical techniques often fail to yield efficient or closed-form solutions for nonlinear fractional problems due to their inherent nonlocality and complexity. This study introduces a new class of high-order parallel iterative methods for solving nonlinear equations, with a focus on fractional-order formulations. We first develop a sixth-order single-root finding scheme, which is then extended to a fractional-order method with convergence order 5σ+1, and further generalized into a parallel scheme achieving order 20σ+8. To improve computational performance, we propose a hybrid neural network-based parallel scheme, in which optimal parameter values are identified through dynamical systems analysis. The resulting methods exhibit strong stability, accuracy, and efficiency, and are robust with respect to both accurate and perturbed initial approximations. Comparative experiments on real-world engineering problems demonstrate that the proposed fractional parallel schemes consistently outperform existing methods in terms of residual error, convergence rate, and computational cost.

Keywords: Fractional scheme; Fractal; Computational analysis; Convergence theorem; Engineering applications (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925006599
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925006599

DOI: 10.1016/j.chaos.2025.116646

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-08-29
Handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925006599