EconPapers    
Economics at your fingertips  
 

Coherence of a periodic potential system with nonlinear nonlocal dissipation and colored noise

Pengfei Xu, Xulu Gong, Yanxia Zhang and Guotao Wang

Chaos, Solitons & Fractals, 2025, vol. 199, issue P2

Abstract: The coherence of a periodic potential system with memory kernel is studied under the action of nonlinear dissipation and colored noise. General expression for the characteristic correlation time is derived for a multi-stable discrete rate process describing the noise-induced transition between states. The coherence can be improved by the strength of memory, while it is shown to be minimized for an appropriate choice of the modulation parameter of dissipation and the number of stable states. Moreover, the phenomena of coherence resonance, anti-coherence resonance, and stochastic multi-resonance are found by simulating quality factor as the memory of the dynamical system is unrelated to its noise spectrum. Specifically, the noise correlation time and the memory time play remarkably different roles in an enhancement of coherence resonance. The quality factor also exhibits a resonance-like dependence on the friction coefficient. More interestingly, in certain parameter regions a scheme for controlling coherence resonance can be achieved by introducing nonlinear dissipation.

Keywords: Coherence resonance; Periodic potential; Nonlinear nonlocal dissipation; Colored noise (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925007635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925007635

DOI: 10.1016/j.chaos.2025.116750

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-08-29
Handle: RePEc:eee:chsofr:v:199:y:2025:i:p2:s0960077925007635