Lagrangian neural networks for nonholonomic mechanics
Viviana Alejandra Díaz,
Leandro Martín Salomone and
Marcela Zuccalli
Chaos, Solitons & Fractals, 2025, vol. 199, issue P3
Abstract:
Lagrangian Neural Networks (LNNs) are a powerful tool for addressing physical systems, particularly those governed by conservation laws. LNNs can parametrize the Lagrangian of a system to predict trajectories with nearly conserved energy. These techniques have proven effective in unconstrained systems as well as those with holonomic constraints. In this work, we adapt LNN techniques to mechanical systems with nonholonomic constraints. We test our approach on some well-known examples with nonholonomic constraints, showing that incorporating these restrictions into the neural network’s learning improves not only trajectory estimation accuracy but also ensures adherence to constraints and exhibits better energy behavior compared to the unconstrained counterpart.
Keywords: Lagrangian neural networks; Nonholonomic mechanics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792500880X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:199:y:2025:i:p3:s096007792500880x
DOI: 10.1016/j.chaos.2025.116867
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().