EconPapers    
Economics at your fingertips  
 

Enhancing cluster synchronization in phase-lagged multilayer networks

Abhijit Mondal, Pitambar Khanra, Subrata Ghosh, Prosenjit Kundu, Chittaranjan Hens and Pinaki Pal

Chaos, Solitons & Fractals, 2025, vol. 200, issue P3

Abstract: Cluster synchronization in multilayer networks of phase oscillators with phase-lag poses significant challenges due to the destabilizing effects of delayed interactions. Leveraging the Sakaguchi-Kuramoto model, this study addresses these challenges by systematically exploring the role of natural frequency distributions in sustaining cluster synchronization under high phase-lag conditions. We focus on four distributions: uniform (uni-uni), partially degree-correlated (deg-uni, uni-deg), and fully degree-correlated (deg-deg), where oscillators’ intrinsic frequencies align with their network connectivity. Through numerical and analytical investigations, we demonstrate that the deg-deg distribution where both layers employ degree-matched frequencies remarkably enhances synchronization stability, outperforming other configurations. We analyze two distinct network architectures: one composed entirely of nontrivial clusters and another combining trivial and nontrivial clusters. Results reveal that structural heterogeneity encoded in the deg-deg coupling counteracts phase-lag-induced desynchronization, enabling robust cluster synchronization even at large phase-lag values. Stability is rigorously validated via transverse Lyapunov exponents (TLEs), which confirm that deg-deg networks exhibit broader synchronization regimes compared to uniform or partially correlated systems. These findings provide critical insights into the interplay between topological heterogeneity and dynamical resilience, offering a framework for designing robust multilayer systems from delay-tolerant power grids to adaptive biological networks, where synchronization under phase-lag is paramount.

Keywords: Cluster synchronization; Symmetry analysis; Multilayer networks; Phase-lagged system; Degree correlated frequency; Master stability analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077925010665
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:200:y:2025:i:p3:s0960077925010665

DOI: 10.1016/j.chaos.2025.117053

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-10-21
Handle: RePEc:eee:chsofr:v:200:y:2025:i:p3:s0960077925010665