A general method for generating multicomponent integrable hierarchies
Hon-Wah Tam and
Yu-Feng Zhang
Chaos, Solitons & Fractals, 2005, vol. 23, issue 3, 963-971
Abstract:
A Lie algebra, whose bases are the forms of M×3 matrices, is defined. Subsequently two types of loop algebras are constructed, whose commutative operations are equivalent to known ones proposed before. By using the Tu scheme, the mulicomponent KN hierarchy and its integrable coupling system, as well as a generalized multicomponent AKNS integrable hierarchy with five potential functions are obtained. The procedure presented in this paper is simple and straightforward and can be used generally
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904003492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:3:p:963-971
DOI: 10.1016/j.chaos.2004.06.010
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().