EconPapers    
Economics at your fingertips  
 

Bifurcations of traveling wave solutions in a compound KdV-type equation

Zhengdi Zhang and Qinsheng Bi

Chaos, Solitons & Fractals, 2005, vol. 23, issue 4, 1185-1194

Abstract: By using the theory of planar dynamical systems to a compound KdV-type nonlinear wave equation, the bifurcation boundaries of the system are obtained in this paper. These bifurcation sets divide the parameter space into different regions, which correspond to qualitatively different phase portraits and therefore different types of the solutions may exist in different regions. The parameter conditions for the existence of solitary wave solutions and uncountably infinite, many smooth and non-smooth, periodic wave solutions are therefore obtained.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904003595
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:4:p:1185-1194

DOI: 10.1016/j.chaos.2004.06.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1185-1194