Bifurcations of traveling wave solutions in a compound KdV-type equation
Zhengdi Zhang and
Qinsheng Bi
Chaos, Solitons & Fractals, 2005, vol. 23, issue 4, 1185-1194
Abstract:
By using the theory of planar dynamical systems to a compound KdV-type nonlinear wave equation, the bifurcation boundaries of the system are obtained in this paper. These bifurcation sets divide the parameter space into different regions, which correspond to qualitatively different phase portraits and therefore different types of the solutions may exist in different regions. The parameter conditions for the existence of solitary wave solutions and uncountably infinite, many smooth and non-smooth, periodic wave solutions are therefore obtained.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904003595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:4:p:1185-1194
DOI: 10.1016/j.chaos.2004.06.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().