EconPapers    
Economics at your fingertips  
 

The Laplacian on the level 3 Sierpinski gasket via the method of averages

Tang Donglei and Su Weiyi

Chaos, Solitons & Fractals, 2005, vol. 23, issue 4, 1201-1209

Abstract: In this paper, we show how the symmetric Laplacian on the level 3 Sierpinski gasket, together with its associated Dirichlet form and harmonic functions, can be defined entirely in terms of average values of a function over basic sets. The approach combined the constructive limit-of-difference-quotients method of Kigami and the method of averages introduced by Kusuoka and Zhou for the Sierpinski carpet.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904003625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:4:p:1201-1209

DOI: 10.1016/j.chaos.2004.06.060

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1201-1209