EconPapers    
Economics at your fingertips  
 

Rotating orbits of a parametrically-excited pendulum

Xu Xu, M. Wiercigroch and M.P. Cartmell

Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1537-1548

Abstract: The authors consider the dynamics of the harmonically excited parametric pendulum when it exhibits rotational orbits. Assuming no damping and small angle oscillations, this system can be simplified to the Mathieu equation in which stability is important in investigating the rotational behaviour. Analytical and numerical analysis techniques are employed to explore the dynamic responses to different parameters and initial conditions. Particularly, the parameter space, bifurcation diagram, basin of attraction and time history are used to explore the stability of the rotational orbits. A series of resonance tongues are distributed along the non-dimensionalied frequency axis in the parameter space plots. Different kinds of rotations, together with oscillations and chaos, are found to be located in regions within the resonance tongues.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904004308
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1537-1548

DOI: 10.1016/j.chaos.2004.06.053

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1537-1548