The three versions of distributional chaos
F. Balibrea,
J. Smı́tal and
M. Štefánková
Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1581-1583
Abstract:
The notion of distributional chaos was introduced by Schweizer and Smı́tal [Trans. Amer. Math. Soc. 344 (1994) 737] for continuous maps of the interval. However, it turns out that, for continuous maps of a compact metric space three mutually nonequivalent versions of distributional chaos, DC1–DC3, can be considered. In this paper we consider the weakest one, DC3. We show that DC3 does not imply chaos in the sense of Li and Yorke. We also show that DC3 is not invariant with respect to topological conjugacy. In other words, there are lower and upper distribution functions Φxy and Φxy* generated by a continuous map f of a compact metric space (M, ρ) such that Φxy*(t)>Φxy(t) for all t in an interval. However, f on the same space M, but with a metric ρ′ generating the same topology as ρ is no more DC3.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904003510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1581-1583
DOI: 10.1016/j.chaos.2004.06.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().