EconPapers    
Economics at your fingertips  
 

An alternative bifurcation analysis of the Rose–Hindmarsh model

Svetoslav Nikolov

Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1643-1649

Abstract: The paper presents an alternative study of the bifurcation behavior of the Rose–Hindmarsh model using Lyapunov–Andronov’s theory. This is done on the basis of the obtained analytical formula expressing the first Lyapunov’s value (this is not Lyapunov exponent) at the boundary of stability. From the obtained results the following new conclusions are made: Transition to chaos and the occurrence of chaotic oscillations in the Rose–Hindmarsh system take place under hard stability loss.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904004278
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1643-1649

DOI: 10.1016/j.chaos.2004.06.080

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1643-1649