EconPapers    
Economics at your fingertips  
 

Evaluation of the largest Lyapunov exponent in dynamical systems with time delay

Andrzej Stefanski, Artur Dabrowski and Tomasz Kapitaniak

Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1651-1659

Abstract: The method of estimation of the largest Lyapunov exponents for dynamical systems with time delay has been developed. This method can be applied both for flows and discrete maps. Our approach is based on the phenomenon of synchronization of identical systems coupled by linear negative feedback mechanism (flows) and exponential perturbation (maps). The existence of linear dependence of the largest Lyapunov exponent on the coupled parameter allows the precise estimation of this exponent.

Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790400428X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1651-1659

DOI: 10.1016/j.chaos.2004.06.051

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1651-1659