EconPapers    
Economics at your fingertips  
 

Percolation models of turbulent transport and scaling estimates

O.G. Bakunin

Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1703-1731

Abstract: The variety of forms of turbulent transport requires not only special description methods, but also an analysis of general mechanisms. One such mechanism is the percolation transport. The percolation approach is based on fractality and scaling ideas. It is possible to explain the anomalous transport in two-dimensional random flow in terms of the percolation threshold. The percolation approach looks very attractive because it gives simple and, at same time, universal model of the behavior related to the strong correlation effects. In the present paper we concentrate our attention on scaling arguments that play the very important role in estimation of transport effects. We discuss the united approach to obtain the renormalization condition of the small parameter, which is responsible for the analytical description of the system near the percolation threshold. Both monoscale and multiscale models are treated. We consider the steady case, time-dependent perturbations, the influence of drift effects, the percolation transport in a stochastic magnetic field, and compressibility effects.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904004357
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1703-1731

DOI: 10.1016/j.chaos.2004.07.001

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1703-1731